

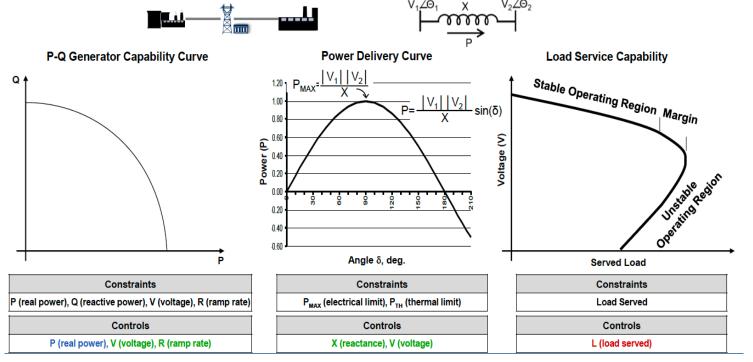
AC OPF-enabled decarbonization for reliable and resilient service

Marija Ilic, MIT and Smart and Gridz, Inc

<u>ilic@mit.edu</u> and milic@smartgridz.com IEEE PES General Meeting, Orlando, FL, July 17-21, 2 Panel on Many uses of AC Optimal Power Flow in the Changing Industry Presentation number 23PESGM3888

Societal objectives of electricity services

Decarbonized-- Cost-effective -- Reliable/Resilient

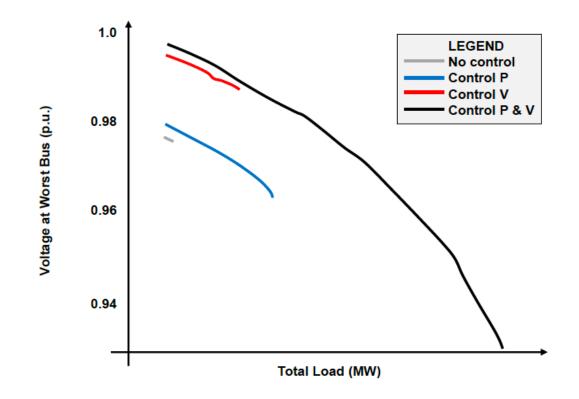

- Meeting decarbonization objectives is disruptive to today's operating and planning practices
- --deliver clean power along different electrical and geographic paths (flexible grid utilization ?)
- --do it by observing NIMBY constraints
- --account for customers' preferences
- --multiple, often conflicting performance criteria (cost-effective, reliable/resilient)

**All else equal, AC extended OPF makes huge difference in the ability to utilize the grid in new ways (disruptive software needed; must make the case that it matters)

Electricity provision today*

Power & Energy Society*

- Top down centralized dispatch and control of large-scale power plants to:
- Task 1) supply predictable system demand;
- Task 2) Compensate predictable transmission losses;
- Task 3) Schedule generation so that there are no ``congestion" delivery grid problems;
- Task 4) Have sufficient regulation reserve to regulate frequency and voltage deviations caused by hard-to-predict slow power imbalances;
- Task 5) Have sufficient security reserve to supply predictable demand reliably even during the worst case (N-1/N-2) outages;
- Task 6) Provide service during extreme events (N-k, k>>2) in a resilient way


*Ilić, Marija, and Francisco Galiana. "Power systems operation: old vs. new."Power Systems Restructuring. Springer, Boston, MA, 1998. 15-107.

AC OPF ``congestion" management

- Congestion—both thermal and electrical (optimizing voltages on regulating equipment – the key)
- The need to have ACOPF-based scheduling instead of AC power flow-based analyses tools
- Adjustments are supposed to work for both "normal" and "abnormal" conditions. Tasks 5 and 6 can also be enhanced significantly by using AC OPF*
- ACOPF-based mitigation for nontime-critical abnormal conditions is very similar to the one with normal conditions

Power Transfer Capability: Texas System Simulation

*Ilic, M., Ulerio, R. S., Corbett, E., Austin, E., Shatz, M., & Limpaecher, E. (2020). A Framework for Evaluating Electric Power Grid Improvements in Puerto Rico.

Ilić, Marija, Sanja Cvijić, Jeffrey H. Lang, Jiangzhong Tong, and Diran Obadina. "Operating beyond today's PV curves: Challenges and potential benefits." In 2015 IEEE Power & Energy Society General Meeting, pp. 1-5. IEEE, 2015.

Resilient and reliable scheduling

From voltage constrained decision making (DCOPF + AC power flow) to coupled AC Optimal Power Flow

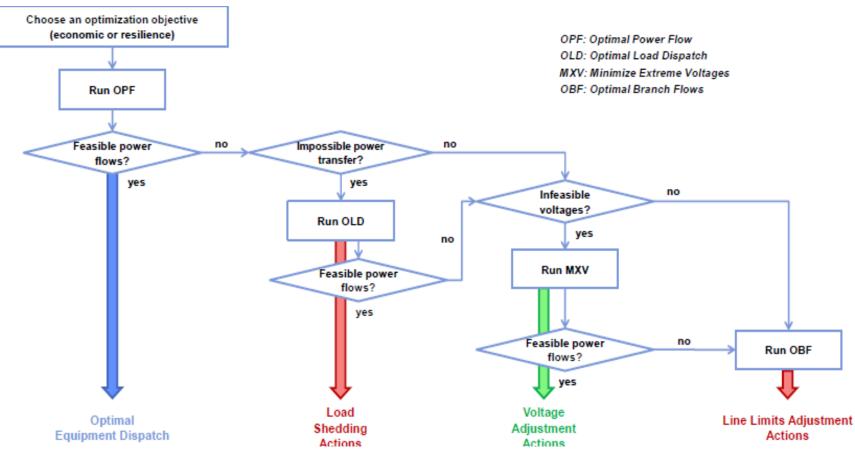
- Given an existing system, how to operate new power plants without experiencing power delivery problems.
- Given an existing system, how much new, renewable, generation to build and at which locations.
- Assess the effect of different pricing rules for integrating renewable resources on long- and shortterm economic efficiency and the ability to recover capital investment cost.

ACOPF is the key software for co-optimizing power generation and voltage settings; increased maximum power transfers

Why is DCOPF insufficient? With increased renewable penetration, it no longer is possible to dispatch real power with DCOPF well enough without optimizing the voltage settings

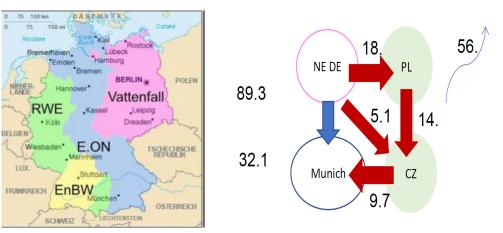
* Cvijić, Sanja, Marija Ilić, Eric Allen, and Jeffrey Lang. "Using extended ac optimal power flow or effective decision making." In 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)

From analysis to optimization


- Power & Energy Society*
- Having the ability to find a solution within specified network and hardware constraints
- Having the ability to optimize with respect to all available decision variables, such as real power generation, demand, and T&D voltagecontrollable equipment
- Providing as part of its output optimization sensitivities
- Providing support of effective resource management according to several optimization objectives
- Providing as part of its output LMPs, which are sensitivities of the performance objective with respect to power injection change at each node in the network

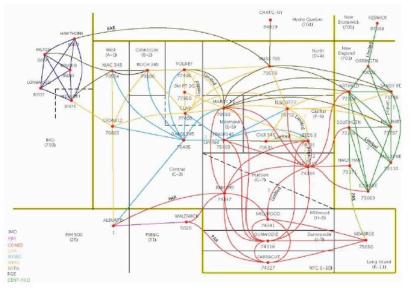
$$LMP_i = \frac{\delta J}{\delta P_i}$$

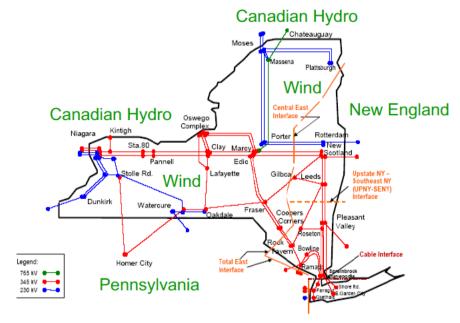
Ilić, Marija, Sanja Cvijić, Jeffrey H. Lang, and Jiangzhong Tong. "Optimal voltage management for enhancing electricity market efficiency." In 2015 IEEE Power & Energy Society General Meeting, pp. 1-5. IEEE, 2015.


AC-XOPF—robust computing for managing performance

Adaptively switching between different performance objectives. This is essential for reconciling reliability and efficiency when system conditions/topology change significantly

If adopted, it will be successful (demonstrations up to date, normal operations)

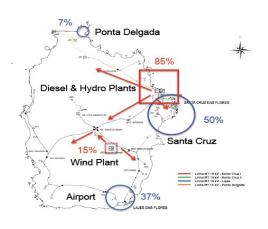

Wind power delivery from NW Germany to Bavaria

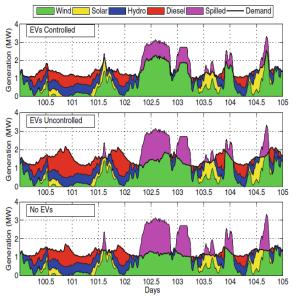

With current grid control 89.3 GW generated 32.1 GW delivered

With DyMonDS 30 GW generated 23 GW delivered

Complex electric energy system in the Northeast (NPCC)

Limits on moving power "around" area Lack of resilience to climate, cyber, operator/equipment Failure to engage "campuses" and small DERs as iBAs No integration across systems (electricity, nuclear, gas, hydrogen?)


New York City Load


- Enabling 1GW clean power transfer from Niagara to NYC
- Seamless integration of DERs

Marija llic and Jeffrey Lang, VOLTAGE DISPATCH AND PRICING IN SUPPORT OF EFFICIENT REAL POWER DISPATCH, NETSS Final Report, NYSERDA Project # 10476, 2012.

Enables delivery of changing generation mix: From dirty to clean; less expensive

100% green Azores Islands, Portugal

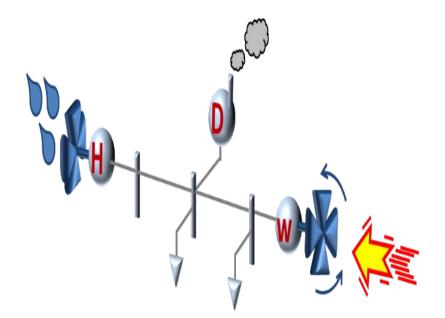
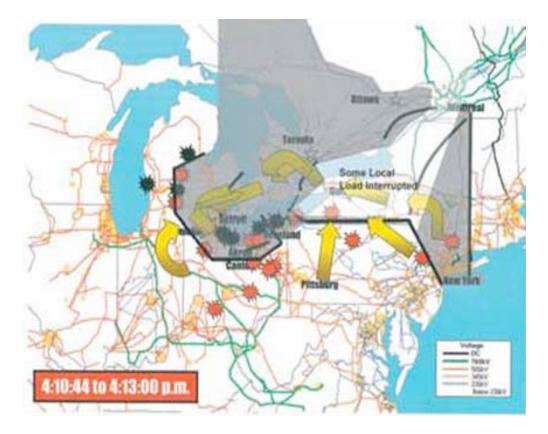
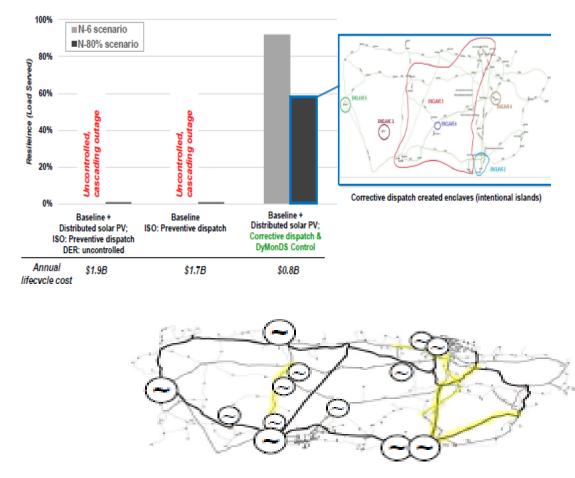




Fig. 11.10 Use of different generation types for a period in spring with 1,000 EVs in different scenarios for the case with moderate wind and solar

- From using >200\$/MWh fossil fuel to \$88\$/MWh levelized wind power
- Enabled demand participation ; Real data given to us by the EDA https://books.google.com/books?hl=en&lr=&id=4X1CAAAAQBAJ&oi=fnd&p g=PR7&dq=ilic+azores&ots=OvqMVVb8rH&sig=l4j5Tm3N3kTZNOo_Pt1l58bgol

Reliable and resilient power delivery during extreme events; preventing wide-spread blackouts

N-6 outage scenario

Blackout 1970s through 2003 could have been prevented

https://ieeexplore.ieee.org/abstract/document/1519724/?casa_token=G2NS7oba8PcAAAAA:9A3k4cdEWv qBeeYKiP4p8o7PdOAxVbGjd0BsCINRRRi-dfw96esyP-f2-e5hGKJ3THU6L0HP

Potential for dramatic improvements to Puerto Rico grid: 40-60% load service, even after catastrophic damage; 50% lower energy costs http://www.ll.mit.edu/sites/default/files/publication/doc/2020-07/a-framework-for-evaluating-electric-power-grid-improvements-in-puerto-rico-ilic.pdf