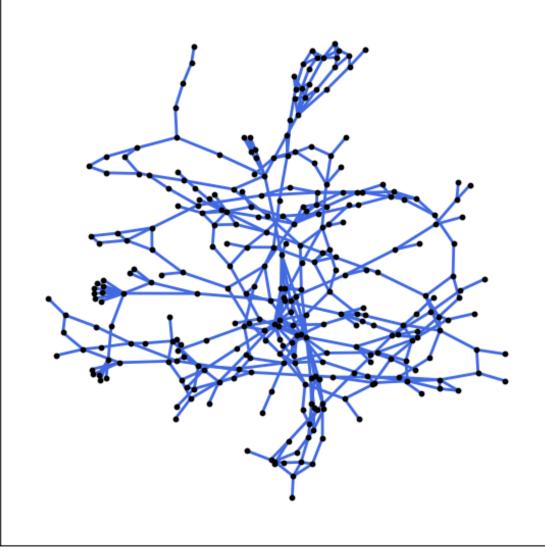
Paper No: 23PESGM0472

IEEE300 Test Case Cascade Step 0

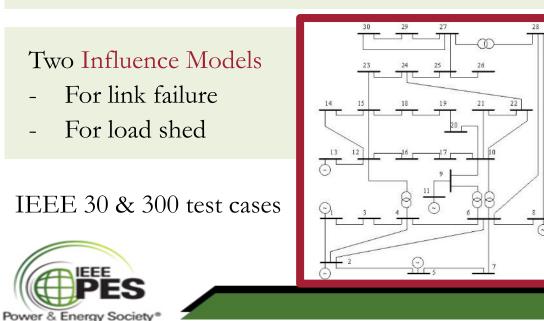


Advisory Tool for Managing Failure Cascades in Systems with Wind Power

Elaine Siyu Liu, Marija Ilic Massachusetts Institute of Technology eliu24@mit.edu, ilic@mit.edu

Background

- Today: utilities are N-1 or N-2 robust
- No method to study imminent possibility of failure cascades for intermittent resources
- Wind: less predictable, higher congestion risk
- Our contribution:
- Predict cascade failures as they evolve
- Advise system operators on corrective actions



Our approach

- Offline: data-enabled learning using synthetic data.
- Online: Markovian **Influence Model** predictions and advisory that are **reliable**, **applicable**, and **efficient**.

Corrective actions, ran with both **DC** and **AC** models

- 1. No action
- 2. Generation re-dispatch:
 - a) Serves load in full
 - b) Minimizes generation cost
- 3. Smart scheduling: generation re-dispatch that
 - a) Preserves all links
 - b) Allows load shed
 - c) Minimize load shed cost

Our Approach

The Influence Model

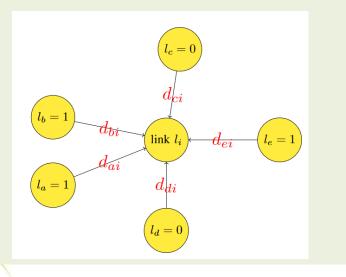
Link Failure Prediction

Decide the status of link i by :

- Status of link j (for all j)

Power & Energy Society

- Influence factor d_{ji} that characterizes the importance level (for all links j)
- Scenario specific threshold for link j



Pairwise influences from one link to another:

$$\begin{array}{l}
A_{ji}^{11} := \mathbb{P}(s_i[t+1] = 1 | s_j[t] = 1), & (1) \\
A_{ji}^{01} := \mathbb{P}(s_i[t+1] = 1 | s_j[t] = 0). & (2)
\end{array}$$
Monte Carlo

Total weighted influence from all links:

$$\widetilde{s}_i[t+1] = \sum_{j=1}^{N_{br}} d_{ji} \left(A_{ji}^{11} s_j[t] + A_{ji}^{01} (1 - s_j[t]) \right),$$

Condition to declare link failure:

 $\widetilde{s}_i[t+1] \ge \epsilon_i$

Adaptive Thresholding

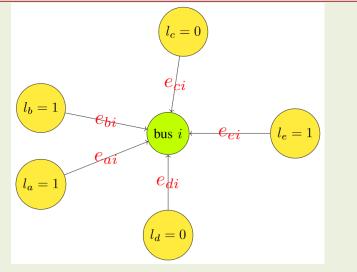
Our Approach

The Influence Model

Load Shed Prediction

Decide the status of load i by :

- Status of link j (for all j)
- Influence factor *e_{ji}* that characterizes the importance level (for all links j)
- Scenario specific threshold for load i



Pairwise influences from one link to a bus:

$$B_{ji}^{11} := \mathbb{P}(l_i[t] = 1 | s_j[t] = 1),$$
(4)

$$B_{ji}^{01} := \mathbb{P}(l_i[t] = 1 | s_j[t] = 0).$$
(5)
Monte Carlo
(5)

Total weighted influence from all links: $\widetilde{l}_{i}[t] = \sum_{j=1}^{N_{br}} e_{ij} \left(B_{ji}^{11} s_{j}[t] + B_{ji}^{01} (1 - s_{j}[t]) \right), \quad (6) \quad \begin{array}{c} \text{Optimization} \\ \text{(LSE)} \end{array}$

Condition to declare load shed:

 $\widetilde{l_i}[t] \ge \delta_i$ A

Adaptive Thresholding

Results - Prediction Speedup and Accuracy

- Accurate
- Fast
- Reveals structural insight

Link failure prediction error

	IM	Rand.	Unif.
exp1	0.038	0.188	0.109
exp2	0.019	0.093	0.049
exp3	0.000	0.094	0.049

Load Shed prediction error

	IM	Rand.	Unif.
exp1	0.214	0.318	0.255
exp2	0.043	0.082	0.043
exp3	0.014	0.026	0.014

X. Wu, D. Wu and E. Modiano, "Predicting Failure Cascades in Large Scale Power Systems via the Influence Model Framework," in IEEE Transactions on Power Systems, Sept. 2021.

Computation Time Improvement (in seconds)

Corrective Action	Simulation	Training	Prediction
No action	170	612	15.40
Re-dispatch for full service	183	306	10.05
Re-dispatch for lowest load shed cost	246	333	6.76

Structural insights from learned coefficients

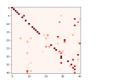


Fig. 11: D matrix for Fig. 12: D matrix for \overrightarrow{AC} PF, $1.6 \times$ loading DC PF, $1.6 \times$ loading

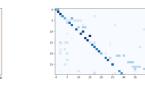


Fig. 15: E matrix for Fig. 14: D matrix for ACOPF, $1 \times$ loading DC PF, $1.6 \times$ loading

DCOPF, $1 \times \text{loading}$

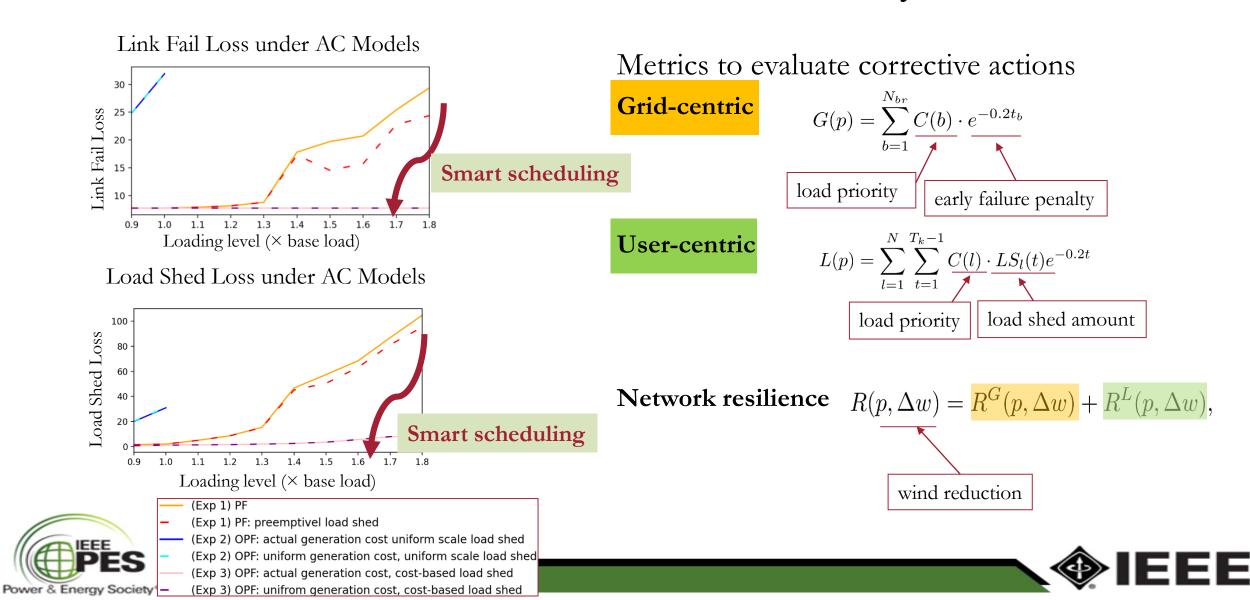
Fig. 13: D matrix for

Fig. 16: *E* matrix for AC PF, $1.6 \times$ loading

Fig. 17: D, E matrix structures.

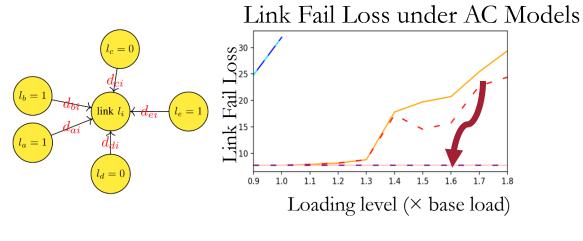
- Most influences are localized.
- Influences are sparse under low loading levels.
- Some links cause largescale damage.
- Some links and buses are particularly vulnerable.

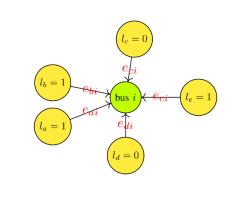
Results – Online Advisory



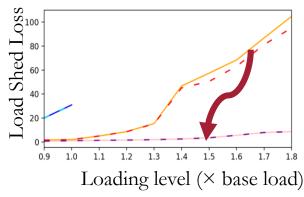
Conclusions/Recommendations

- Markovian Influence Model
 - Online prediction of link failure and load shed during a wind reduction-induced cascade.
 - Speed and accuracy.
- Three strategies to minimize loss.
 Smart scheduling is extremely effective.
- Resilience impact factor to assess the criticality of wind reduction.





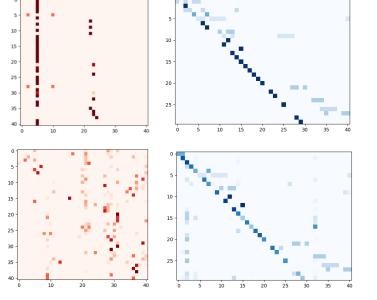
Load Shed Loss under AC Models



The Influence Model as an Advisory Tool

- Find the most critical links and loads
- Inform best way to shed load

Data-driven solution are tremendously effective in predicting and managing uncertainties for utilities.



Thank you! Questions? eliu24@mit.edu

Arxiv: 2211.15957

We thank MIT UROP, MITEI, and the Advanced Research Projects Agency-Energy, US Department of Energy (DE-AR0001277) for support.

