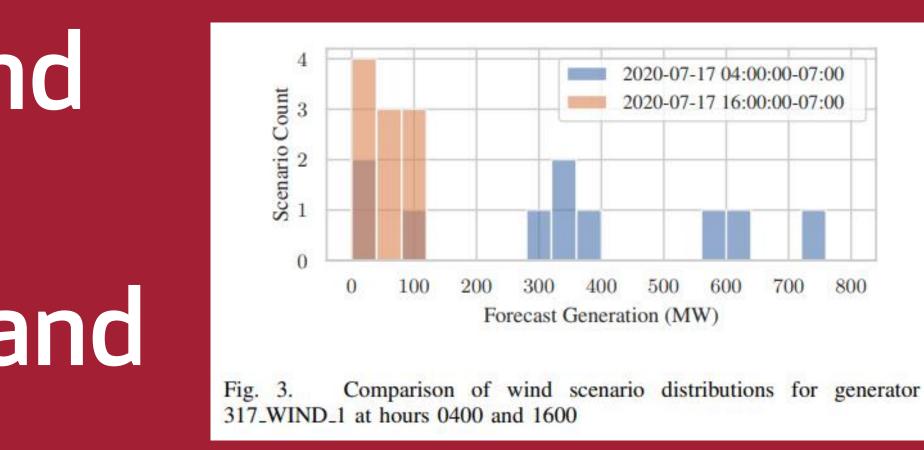

Valuing Uncertainties in Wind Generation An Agent-Based Optimization Approach

Daniel Shen oski@mit.edu Marija Ilic ilic@mit.edu

Forecasts for wind & solar come with *uncertainty*.



We value each MW of wind based on the anticipated system price conditions and wind uncertainty...

And simulate the effects when wind generators apply this offer strategy in a test 73 bus system (RTS-GMLC).

Each MW has a different likelihood of actually being available, so each MW has a different value.

Variable Renewable Energy (VRE) has zero fuel costs but more uncertain delivery characteristics

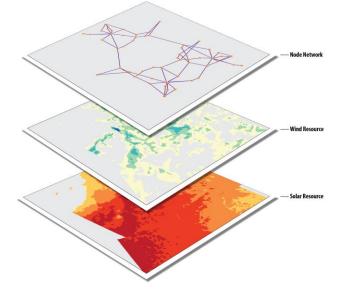
• While forecasts for these resources are improving, there will always be uncertainty in the forecasts; we could be 99% confident in the first 50MW forecast block but only 30% confident of the next 10MW.

What if the energy offers reflected the firmness of each MW instead of solely variable costs such as fuel?

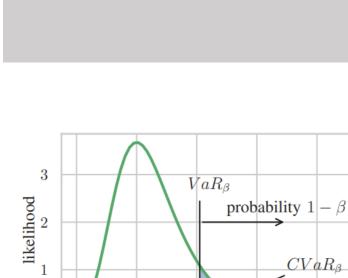
Gas (CC) Wind Gas (CT) Nuclear Oil (CT) Oil (Steam) PV (Utility) Rooftop PV Concentrated S Run-of-River MEAN TOTAL PAYMENTS TO GENERATORS (\$, THOUSANDS) BY • In certain risk-preference GENERATION TYPE AND WIND OFFER STRATEGY Gas (CC) Gas (CT) Nuclear Oil (CT) Oil (Stean STANDARD 1 THOUSANDS

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Background

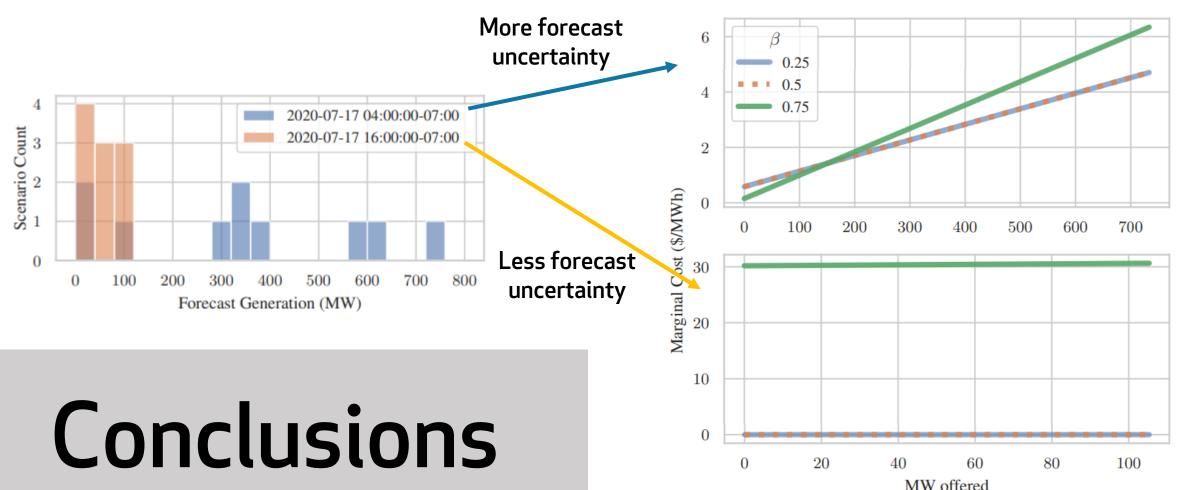

Results

	Total capacity (RTS-GMLC)	Count	Keep?	Final %
	3550	10	Yes	31
	2508	4	Yes	22
	2317	16	Yes	20
	1485	27	Yes	13
	950	19	Yes	8
	400	1	Yes	3
	240	12	Yes	2
	84	7	Yes	1
	1555	25	No	0
	1161	31	No	0
Solar	200	1	No	0
	50	1	No	0


Centr 25th	ralized Dis 50th	patch 75th	Risk-A $\beta=0.25$	ware Win 0.5	d Bids 0.75
			1		
197432	195418	195407	189988	217076	207836
91328	89724	88916	88494	101349	99549
236498	234349	224971	205979	238631	241216
72343	70984	73424	77706	79749	76999
45687	45294	44749	41594	47462	46026
49	44	70	0	1005	0
183	182	182	183	183	185
32312	35289	24425	-9647	-610	10240
675832	671284	652144	504207	684845	682051

		TAI	BLE IV			
DE	EVIATION	OF TOT	AL PAYM	IENTS TO G	ENERAT	ORS (\$,
5) 1	BY GENE	RATION	TYPE AN	ND WIND O	FFER STR	RATEGY
	Centra	alized Di	ispatch	Risk-Aware Wind Bids		
•	25th	50th	75th	β = 0.25	0.5	0.75

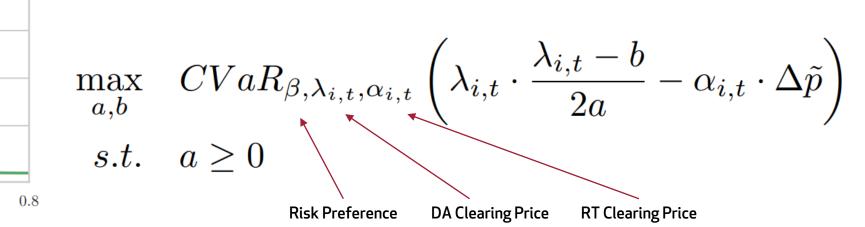
0 0



- scenarios (low risk tolerance), wind generators lose money because their input estimates of market clearing prices are not accurate.
- Wind generators make more profit when the system operator dispatches them based on simple heuristics, but the variance in generator payments significantly increases to fast-response generators.
- The specific impacts of allowing generators to hedge in energy markets will be dependent on the mix of generation resources and system loading.

- MW: [\$/MWh] = 2a + b
- This offer is influenced by:

 - Generator risk preference


The information, data, or work presented herein was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 2141064 as well as in part by the Advanced Research Projects Agency - Energy (ARPA-E), U.S. Department of Energy under Award Number DEAR0001277. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Read our paper from ACC 2023→ https://arxiv.org/abs/2210.02963

Methods

• The generator determines coefficients *a* and *b* that characterize its marginal price offer as a function of

• Revenue from the day-ahead market

• Penalty from repurchasing shortfall in the real-time market

• The distribution of forecasted wind power

 Possible to create offers that empirically reflect uncertainty-associated costs

• "Uncertainty-aware" offers empirically lower the variance in wind generator revenues, with the tradeoff of lower expected revenues; hedging works

• Multiday cycle simulations with learning of generator offer vs. market price needed to demonstrate effectiveness of hedging strategy & find Pareto frontier of expected system cost vs. variance in costs