
• Variable Renewable Energy (VRE) has 
zero fuel costs but more uncertain 
delivery characteristics

• While forecasts for these resources 
are improving, there will always be 
uncertainty in the forecasts; we could 
be 99% confident in the first 50MW 
forecast block but only 30% confident 
of the next 10MW.

• What if the energy offers reflected the 
firmness of each MW instead of solely 
variable costs such as fuel?
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Background

We value each MW of wind 
based on the anticipated 
system price conditions and 
wind uncertainty…

Forecasts for wind & solar 
come with uncertainty.

And simulate the effects 
when wind generators apply 

this offer strategy in a test 
73 bus system (RTS-GMLC) .

Read our paper from ACC 2023→
https://arxiv.org/abs/2210.02963

Each MW has a different 
likelihood of actually being 
available, so each MW has a 

different value.

Methods

• The generator determines coefficients a and b that 
characterize its marginal price offer as a function of 
MW: [$/MWh] = 2a + b

• This offer is influenced by:

• Revenue from the day-ahead market
• Penalty from repurchasing shortfall in the real-time market
• Generator risk preference
• The distribution of forecasted wind power
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• Possible to create offers that empirically reflect 
uncertainty-associated costs

• “Uncertainty-aware” offers empirically lower the 
variance in wind generator revenues, with the tradeoff 
of lower expected revenues; hedging works

• Multiday cycle simulations with learning of generator 
offer vs. market price needed to demonstrate 
effectiveness of hedging strategy & find Pareto 
frontier of expected system cost vs. variance in costs

More forecast 
uncertainty

Less forecast 
uncertainty

Conclusions

Results

• In certain risk-preference 
scenarios (low risk tolerance), 
wind generators lose money 
because their input estimates of 
market clearing prices are not 
accurate.

• Wind generators make more 
profit when the system operator 
dispatches them based on simple 
heuristics, but the variance in 
generator payments significantly 
increases to fast-response 
generators.

• The specific impacts of allowing 
generators to hedge in energy 
markets will be dependent on the 
mix of generation resources and 
system loading.

A modified RTS-GMLC system was used for the simulation.
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